Inter-Annotation Agreement

COSI 140 – Natural Language Annotation for Machine Learning

James Pustejovsky

February 23, 2016 Brandeis University

- Corpus Reliability
- Existing Reliability Measures
- Motivation
- Affective Text Corpus and Annotation
- A_m Agreement Measure and Reliability
- Gold Standard Determination
- Experimental Results
- Conclusion

Corpus Reliability

- Supervised techniques depend on annotated corpus.
- For appropriate modeling of a natural phenomena the annotated corpus should be reliable.
- The recent trend is to annotate corpus with more than one annotator and measure agreement.
- Agreement measure/coefficient of reliability.

- Corpus Reliability
- Existing Reliability Measures
- Motivation
- Affective Text Corpus and Annotation
- A_m Agreement Measure and Reliability
- Gold Standard Determination
- Experimental Results
- Conclusion

Existing Reliability Measures

- Cohen's Kappa (Cohen, 1960)
- Scott's π (Scott, 1955)
- Krippendorff's α (Krippendorff, 1980)
- Rosenberg and Binkowski, 2004
 Annotation limited to two categories

- Corpus Reliability
- Existing Reliability Measures
- Motivation
- Affective Text Corpus and Annotation
- A_m Agreement Measure and Reliability
- Gold Standard Determination
- Experimental Results
- Conclusion

• The existing measures are applicable to single class annotation.

- Corpus Reliability
- Existing Reliability Measures
- Motivation
- Affective Text Corpus and Annotation
- A_m Agreement Measure and Reliability
- Gold Standard Determination
- Experimental Results
- Conclusion

Affective Text Corpus and Annotation

- Consists of 1000 sentences collected from news headlines and articles in *Times of India (TOI)* archive.
- Affect classes → Set of basic emotions [P. Ekman]
 - Anger, disgust, fear, happiness, sadness, surprise

	Anger	Disgust	Fear	Нарру	Sad	Surprise
UI	0	I	0	0	0	I
U2	0	0	0	I	0	I

- Corpus Reliability
- Existing Reliability Measures
- Motivation
- Affective Text Corpus and Annotation
- A_m Agreement Measure and Reliability
- Gold Standard Determination
- Experimental Results
- Conclusion

A_m Agreement Measure and Reliability

Features of A_m

- Handles multi-class annotation
- Non-inclusion in a category is also considered as agreement.
- Inspired by Cohen's Kappa and is formulated as

$$A_m = \frac{P_o - P_e}{1 - P_e}$$

where P_o is the observed agreement and P_e is the expected agreement.

Considers category pairs while computing P_o and P_e.

Notion of Paired Agreement

 For an item, two annotators U1 and U2 are said to agree on category pair <C1, C2> if

> U1.C1 = U2.C1U1.C2 = U2.C2

where Ui.Cj signifies that the value for Cj for annotator Ui and the value may either be 1 or 0.

	Anger	Fear
UI	0	I
U2	0	I

Example Annotation

Sen	Judge	A	D	S	н
I	UI	0	I	l.	0
	U2	0	I	I	I
2	UI	I	0	I	0
	U2	0	I	l	0
3	UI	0	0	I	0
	U2	-	0	I	0
4	UI	I	0	I	I
	U2		0		0

 $A \rightarrow Anger$ $D \rightarrow Disgust$ $F \rightarrow Sadness$ $H \rightarrow Happiness$

Computation of P_o

- U = 2, C = 4, I = 4
- The total agreement on a category pair p for an item i is n_{ip}, the number of annotator pairs who agree on p for i.

	A-D	A-S	A-H	D-S	D-H	S-H
n _{Ip}	I	I	0		0	0

The average agreement on a category pair p for an item i is

	A-D	A-S	A- H	D-S	D- H	S-H
P _{Ip}	1.0	1.0	0.0	1.0	0.0	0.0

$$P_{ip} = \frac{1}{\binom{\mathbf{U}}{2}} n_{ip}$$

The average agreement for the item i is

 $P_1 = 0.5$

$$P_i = \frac{1}{\binom{\mathbf{C}}{2}\binom{\mathbf{U}}{2}} \sum_{p \in \mathbf{S}} n_{ip}$$

Similarly, P₂ = 0.57, P₃ = 0.5, P₄ = 1

The observed agreement is

Po = 0.64

$$P_o = \frac{1}{\mathbf{I}} \sum_{i=1}^{I} P_i$$
$$= \frac{1}{\mathbf{I} \binom{\mathbf{C}}{2} \binom{\mathbf{U}}{2}} \sum_{i=1}^{I} \sum_{p \in \mathbf{S}} n_{ip}$$
$$= \frac{4}{\mathbf{IC}(\mathbf{C}-1)\mathbf{U}(\mathbf{U}-1)} \sum_{i=1}^{I} \sum_{p \in \mathbf{S}} n_{ip}$$

Computation of Pe

- Expected agreement is the expectation that the annotators agree on a category pair.
- For a category pair, possible assignment combinations
 G = {[0 0], [0 1], [1 0], [1 1]}

Computation of P_e (Cont....)

 Overall proportion of items assigned with assignment combination g ∈ G to category pair p by annotator u is

$$\hat{P}(p_g|u) = \frac{n_{p_g u}}{\mathbf{I}}$$

	0-0	0-1	1-0	1-1
A-D (U1)	1⁄4 = 0.25	1⁄4 = 0.25	2/4 = 0.5	0/4 = 0.0
A-D (U2)	0/4 = 0.0	2/4 = 0.5	2/4 = 0.5	0/4 = 0.0

Computation of P_e (Cont....)

 The probability that two arbitrary coders agree with the same assignment combination in a category pair

is

$$\hat{P}(p_g) = \frac{1}{\binom{\mathbf{U}}{2}} \sum_{(u_x, u_y) \in W} \hat{P}(p_g | u_x) \hat{P}(p_g | u_y)$$

	0-0	0-I	I-0	1-1
A-D	0.0	0.125	0.25	0.0

Computation of P_e (Cont....)

The probability that two arbitrary annotators agree on a category pair for all assignment combinations is

A-D	A-S	A-H	D-S	D-H	S-H
0.375	0.5	0.25	0.5	0.375	0.623

The chance agreement is

$$P_{e} = 0.46$$

$$P_e = \frac{1}{\binom{\mathbf{C}}{2}} \sum_{p \in S} \hat{P}(p)$$

 $A_{\rm m} = 0.33$

- Corpus Reliability
- Existing Reliability Measures
- Motivation
- Affective Text Corpus and Annotation
- A_m Agreement Measure and Reliability
- Gold Standard Determination
- Experimental Results
- Conclusion

Gold Standard Determination

- Majority decision label is assigned to an item.
- Expert Coder Index of one annotator indicates how often he agrees with others.
- Expert Coder Index is used when there is no majority of any class for an item.

- Corpus Reliability
- Existing Reliability Measures
- Motivation
- Affective Text Corpus and Annotation
- A_m Agreement Measure and Reliability
- Gold Standard Determination
- Experimental Results
- Conclusion

Annotation Experiment

- Participants: 3 human judges
- Corpus: 1000 sentences from TOI archive
- Task: annotate sentences with affect categories.
- Outcome: Three human judges were able to finish within 20 days.
- We report results based on data provided by three annotators.

Annotation Experiment (Cont...)

Analysis of Corpus Quality

Agreement Value

Agreement	A_m Value
Observed Agreement(P_o)	0.878
Chance Agreement(P_e)	0.534
A_m	0.738

Agreement study

- 71.5% of the corpus belongs to [0.7 1.0] range of observed agreement and among this portion, the annotators assign 78.6% of the sentences into a single category.
- For the non-dominant emotions in a sentence, ambiguity has been found while decoding.

Analysis of Corpus Quality (Cont...)

Disagreement study

Analysis of Corpus Quality (Cont...)

- Category pair with maximum confusion is [anger disgust]
- Anger and disgust are close to each other in the <u>evaluation-activation</u> model of emotion.
- *anger*, *disgust* and *fear* are associated with three topmost ambiguous pairs.

Gold Standard Data

