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Statistical Significance and 

Performance Measures
 Just a brief review of confidence intervals 

Assume you've seen t-tests, etc.

◦ Confidence Intervals

◦ Central Limit Theorem

 Permutation Testing

 Other Performance Measures

◦ Precision

◦ Recall

◦ F-score

◦ ROC
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Statistical Significance
 How do we know that some measurement is statistically significant vs 

being just a random perturbation

◦ How good a predictor of generalization accuracy is the sample accuracy 
on a test set?

◦ Is a particular hypothesis really better than another one because its 
accuracy is higher on a validation set?

◦ When can we say that one learning algorithm is better than another for a 
particular task or set of tasks?

 For example, if learning algorithm 1 gets 95% accuracy and learning 
algorithm 2 gets 93% on a task, can we say with some confidence that 
algorithm 1 is superior in general for that task?

 Question becomes: What is the likely difference between the sample 
error (estimator of the parameter) and the true error (true 
parameter value)?

 Key point – What is the probability the the differences in our results 
are just due to chance?
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Confidence Intervals
 An N% confidence interval for a parameter p is an interval that is 

expected with probability N% to contain p

 The true mean (or whatever parameter we are estimating) will fall in the 

interval  CN of the sample mean with N% confidence, where  is the 

deviation and CN gives the width of the interval about the mean that 

includes N% of the total probability under the particular probability 

distribution. CN is a distribution specific constant for different interval 

widths.

 Assume the filled in intervals are the 90% confidence intervals for our 

two algorithms.  What does this mean?

◦ The situation below says that these two algorithms are different with 90% confidence

◦ Would if they overlapped?

◦ How do you tighten the confidence intervals? – More data and tests

95%93%

92            93          94          95           96

1.6 1.6



Central Limit Theorem

 Central Limit Theorem

◦ If there are a sufficient number of samples, and

◦ The samples are iid (independent, identically distributed) - drawn 

independently from the identical distribution

◦ Then, the random variable can be represented by a Gaussian 

distribution with the sample mean and variance

 Thus, regardless of the underlying distribution (even when 

unknown), if we have enough data then we can assume that the 

estimator is Gaussian distributed

 And we can use the Gaussian interval tables to get intervals  zN

 Note that while the test sets are independent in n-way CV, the 

training sets are not since they overlap (Still a decent 

approximation)
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Binomial Distribution

 Given a coin with probability p of heads, the binomial 
distribution gives the probability of seeing exactly r
heads in n flips.

 A random variable is a random event that has a specific 
outcome (X = number of times heads comes up in n
flips)
◦ For binomial, Pr(X = r) is P(r) 

◦ The mean (expected value) for the binomial is np

◦ The variance for the binomial is np(1 – p)

 Same setup for classification where the outcome of an 
instance is either correct or in error and the sample 
error rate is r/n which is an estimator of the true error 
rate p
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Binomial Estimators

 Usually want to figure out p (e.g. the true 

error rate)

 For the binomial the sample error r/n is 

an unbiased estimator of the true error p

◦ An estimator X of parameter y is unbiased if 

E[X] - E[y] = 0

 For the binomial the sample deviation is
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n
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»

Errsample (1- Errsample)
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Comparing two Algorithms - paired 

t test
 Do k-way CV for both algorithms on the same data 

set using the same splits for both algorithms (paired)
◦ Best if k > 30 but that will increase variance for smaller 

data sets

 Calculate the accuracy difference i between the 
algorithms for each split (paired) and average the k
differences to get 

 Real difference is with N% confidence in the interval
  tN,k-1 

where  is the standard deviation and tN,k-1 is the N% t
value for k-1 degrees of freedom.  The t distribution is 
slightly flatter than the Gaussian and the t value 
converges to the Gaussian (z value) as k grows.
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Paired t test - Continued

  for this case is defined as 

 Assume a case with  = 2 and two algorithms M1 and M2 with an 

accuracy average of approximately 96% and 94% respectively and 

assume that t90,29   = 1.  This says that with 90% confidence the true 

difference between the two algorithms is between 1 and 3 percent.  

This approximately implies that the extreme averages between the 

algorithm accuracies are 94.5/95.5 and 93.5/96.5.  Thus we can say that 

with 90% confidence that M1 is better than M2 for this task.  If t90,29  

is greater than  then we could not say that M1 is better than M2 with 

90% confidence for this task.

 Since the difference falls in the interval   tN,k-1 we can find the tN,k-1

equal to / to obtain the best confidence value 

s =
1

k(k -1)
(di

i=1

k

å -d)2
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Permutation Test

 With faster computing it is often reasonable to do a direct 

permutation test to get a more accurate confidence, especially with 

the common 10 fold cross validation (only 1000 permutations)

Menke, J., and Martinez, T. R.,  Using Permutations Instead of Student's t Distribution for p-values in 

Paired-Difference Algorithm Comparisons, Proceedings of the IEEE International Joint 

Conference on Neural Networks IJCNN’04, pp. 1331-1336, 2004.

 Even if two algorithms were really the same in accuracy you would 

expect some random difference in outcomes based on data splits, 

etc.

 How do you know that the measured difference between two 

situations is not just random variance?

 If it were just random, the average of many random permutations of 

results would give about the same difference (i.e. just the problem 

variance)
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Permutation Test Details
 To compare the performance of models M1 and M2 using a permutation test: 

1. Obtain a set of k estimates of accuracy A = {a1, ..., ak} for M1 and B = {b1, ..., bk} for M2
(e.g. each do k-fold CV on the same task, or accuracies on k different tasks, etc.)

2. Calculate the average accuracies, μA = (a1 + ... + ak)/k and μB = (b1 + ... + bk)/k (note 
they are not paired in this algorithm)

3. Calculate dAB = |μA - μB| 

4. let p = 0 

5. Repeat n times (or just every permutation)

a. let S={a1, ..., ak, b1, ..., bk}

b. randomly partition S into two equal sized sets, R and T (statistically best 
if partitions not repeated)

c. Calculate the average accuracies, μR and μT

d. Calculate dRT = |μR - μT| 

e. if dRT ≥ dAB then p = p+1 

6. p-value = p/n (Report p, n, and p-value) 

A low p-value implies that the algorithms really are different

Alg 1 Alg 2 Diff

Test 1 92 90 2

Test 2 90 90 0

Test 3 91 92 -1

Test 4 93 90 3

Test 5 91 89 2

Ave 91.4 90.2 1.2
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Statistical Significance Summary
 Required for publications 
 No single accepted approach
 Many subtleties and approximations in each 

approach
◦ Independence assumptions often violated
◦ Degrees of freedom: Is LA1 still better than LA2 when

 The size of the training sets are changed
 Trained for different lengths of time
 Different learning parameters are used
 Different approaches to data normalization, features, etc.
 Etc.

 Author's tuned parameters vs default parameters 
(grain of salt on results)

 Still can (and should) get higher confidence in your 
assertions with the use of statistical measures
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Performance Measures

 Most common measure is accuracy

◦ Summed squared error

◦ Mean squared error

◦ Classification accuracy
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Issues with Accuracy

 Assumes equal cost for all errors

 Is 99% accuracy good; Is 30% accuracy bad?
◦ Depends on baseline and problem complexity

◦ Depends on cost of error (Heart attack diagnosis, etc.)

 Error reduction (1-accuracy)
◦ Absolute vs relative

◦ 99.90% accuracy to 99.99% accuracy is a 90% relative 
reduction in error, but absolute error is only reduced by 
.09%.

◦ 50% accuracy to 75% accuracy is a 50% relative reduction 
in error and the absolute error reduction is 25%.

◦ Which is better?
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Binary Classification
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Accuracy = (TP+TN)/(TP+TN+FP+FN)

Precision = TP/(TP+FP)

Recall = TP/(TP+FN)
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Precision
Predicted Output
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Recall
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Other measures - Precision vs. 

Recall

 Considering precision and recall lets us choose a ML 
approach which maximizes what we are most 
interested in (precision or recall) and not just 
accuracy.

 Tradeoff - Can also adjust ML parameters to 
accomplish the goal of the application – Heart attack 
vs Google search
◦ How would we do this with an MLP for example

 Break even point: precision = recall

 F1 or F-score = 2(precision  recall)/(precision 
recall) - Harmonic average of precision and recall



20

Cost Ratio

 For binary classification (concepts) can have an 
adjustable threshold for deciding what is a True 
class vs a False class

◦ For BP it could be what activation value is used to 
decide if a final output is true or false (default .5) 

◦ For ID3 it could be what percentage of the leaf 
elements need to be in a class for that class to be 
chosen (default is the most common class)

 Could slide that threshold depending on your 
preference for True vs False classes (Precision vs 
Recall)

 Radar detection of incoming missiles
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ROC Curves and ROC Area

 Receiver Operating Characteristic

 Developed in WWII to statistically model false positive and false 

negative detections of radar operators

 Standard measure in medicine and biology

 True positive rate (sensitivity) vs false positive rate (1- specificity)

 True positive rate (Probability of predicting true when it is true) 

P(Pred:T|T) = Sensitivity = recall = TP/P = TP/(TP+FN)

 False positive rate (Probability of predicting true when it is false) 

P(Pred:T|F) = FP/N = FP/(TN+FP) = 1 – specificity (true negative 

rate) = 1 – TN/N = 1 - TN/(TN+FP)

◦ Want to maximize TPR and minimize FPR

◦ How would you do each independently?



ROC Curves and ROC Area
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 Neither extreme is acceptable

◦ Want to find the right balance

◦ But the right balance/threshold can differ for each task 
considered

 How do we know which algorithms are robust and accurate 
across many different thresholds? – ROC curve

 Each point on the ROC curve represents a different tradeoff 
(cost ratio) between true positive rate and false positive rate

 Standard measures just show accuracy for one setting of the 
cost/ratio threshold, whereas the ROC curve shows 
accuracy for all settings and thus allows us to compare how 
robust to different thresholds one algorithm is compared to 
another
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 Assume Backprop threshold

 Threshold = 1 (0,0), then all 

outputs are 0

P(T|T) = 0,  P(T|F) = 0

 Threshold = 0, (1,1)  

P(T|T) = 1,  P(T|F) = 1

 Threshold = .8 (.2,.2)

P(T|T) = .38 P(T|F) = .02

- Better Precision

 Threshold = .5 (.5,.5)

P(T|T) = .82 P(T|F) = .18

- Better Accuracy

 Threshold = .3 (.7,.7)

P(T|T) = .95 P(T|F) = .43

- Better Recall

.8

.5

.3

Accuracy is maximized at point closest to the top left corner.

Note that Sensitivity = Recall and the lower the

false positive rate, the higher the precision.
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ROC Properties

 Area Properties
◦ 1.0 - Perfect prediction
◦ .9 - Excellent
◦ .7 - Mediocre
◦ .5 - Random

 ROC area represents performance over all possible 
cost ratios

 If two ROC curves do not intersect then one method 
dominates over the other

 If they do intersect then one method is better for some 
cost ratios, and is worse for others 
◦ Blue alg better for precision, yellow alg for recall, red neither

 Can choose method and balance based on goals
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Performance Measurement 

Summary
 Other measures (F-score, ROC) gaining 

popularity

 Can allow you to look at a range of
thresholds

 However, they do not extend to multi-
class situations which are very common

◦ Could always cast problem as a set of two 
class problems but that can be inconvenient

 Accuracy handles multi-class outputs and 
is still the most common measure
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Gathering a Data Set

 Consider a Task:  Classifying the quality of pizza

 What features might we use?

 Data Types

◦ Nominal (aka Categorical, Discrete)

◦ Continuous (aka Real, Numeric)

◦ Linear (aka Ordinal) – Is usually just treated as 
continuous, so that ordering info is maintained

 How to represent those features?

◦ Will usually depend on the learning model we are using

 Classification assumes the output class is nominal.  
If output is continuous, then we are doing regression.



Fitting Data to the Model
 Continuous -> Nominal
◦ Discretize into bins – more on this later

 Nominal -> Continuous (Perceptron expects 
continuous)
a)One input node for each nominal value where one of the 

nodes is set to 1 and the other nodes are set to 0
Can also explode the variable into n-1 input nodes where the most 

common value is not explicitly represented (i.e. the all 0 case)

b)Use 1 node but with a different continuous value 
representing each nominal value

c)Distributed – logbn nodes can uniquely represent n nominal 
values (e.g. 3 binary nodes could represent 8 values)

d)If there is a very large number of nominal values, could 
cluster (discretize) them into a more manageable number of 
values and then use one of the techniques above

28



Data Normalization

 What would happen if you used two input 

features in an astronomical task as follows:

◦ Weight of the planet in grams

◦ Diameter of the planet in light-years

29
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Performance Measures

 There are a number of ways to measure the 
performance of a learning algorithm:

◦ Predictive accuracy of the induced model

◦ Size of the induced model

◦ Time to compute the induced model

◦ etc.

 We will focus here on accuracy

 Fundamental Assumption:

Future novel instances are drawn from the 
same/similar distribution as the training 

instances
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Training/Testing Alternatives

 Four methods that we will consider:
◦ Training set method: The model is evaluated 

on the same data set that was used for 
training

◦ Static split test set method:  Two distinct data 
sets are made available to the learning 
algorithm; one for training and one for testing

◦ Random split test set method:  A single data 
set is made available to the learning 
algorithm and the data set is split such that 
x% of the instances are randomly selected 
for training and the remainder are used for 
testing, where you supply the value of x.

◦ N-fold cross-validation
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Training Set Method

 Procedure

◦ Build model from the dataset

◦ Compute accuracy on the same dataset

 Simple but least reliable estimate of future 
performance on unseen data (a rote 
learner could score 100%!)

 Not used as a performance metric but it 
is often useful information in 
understanding how a machine learning 
model learns
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Static Training/Test Set

 Static Split Approach

◦ The data owner makes available to the machine 
learner two distinct datasets:
 One is used for learning/training (i.e., inducing a model), and

 One is used exclusively for testing

 Note that this gives you a way to do repeatable 
tests

 Can be used for challenges (e.g. to see how 
everyone does on one particular unseen set, etc.)

 Be careful not to overfit the Test Set (“Gold 
Standard”)
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Random Training/Test Set Approach

 Random Split Approach

◦ The data owner makes available to the machine learner a single dataset

◦ The machine learner splits the dataset into a training and a test set, such 
that:

 Instances are randomly assigned to either set

 The distribution of instances (with respect to the target class) is hopefully similar 
in both sets due to randomizing the data before the split (stratification is even 
better but not required here)

 Typically 60% to 90% of instances are used for training and the remainder for 
testing – the more data there is the more that can be used for training and still 
get statistically significant test predictions

◦ Useful quick estimate for computationally intensive learners

◦ Not statistically optimal (high variance, unless lots of data)

◦ Can avoid possible overfit of just one test set

◦ Best to do multiple training runs with different splits.  Train and test m
times and then average the accuracy over the m runs to get a more 
statistically accurate prediction of generalization accuracy
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N-fold Cross-validation

 Use all the data for both training and testing

◦ Statistically more reliable

◦ All data can be used which is good for small data 
sets

 Procedure
◦ Partition the randomized dataset (call it D) into N equally-sized 

subsets S1, …, SN

◦ For k = 1 to N

 Let Mk be the model induced from D - Sk

 Let ak be the accuracy of  Mk on the instances of the test fold Sk

◦ Return (a1+a2+…+aN)/N
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N-fold Cross-validation (cont.)
 The larger N is, the smaller the variance in the final 

result
 The limit case where N = |D| is known as leave-one-out

and provides the most reliable estimate.  However, it is 
typically only practical for small instance sets

 Generally, a value of N=10 is considered a reasonable 
compromise between time complexity and reliability

 Still must choose an actual model to use during 
execution - how?
◦ Could select the one model that was best on its fold?
◦ All data?  With any of the above approaches

 Note that CV is just a better way to estimate how well 
we will do on novel data, rather than a way to do 
model selection



37

Regression
 For classification the output(s) is nominal

 In regression the output is continuous
◦ Function Approximation

 Many models could be used – Simplest is 
linear regression
◦ Fit data with the best hyper-plane which "goes 

through" the points

y

dependent

variable

(output)

x – independent variable (input)
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Regression
 For classification the output(s) is nominal

 In regression the output is continuous
◦ Function Approximation

 Many models could be used – Simplest is 
linear regression
◦ Fit data with the best hyper-plane which "goes 

through" the points

y

dependent

variable

(output)

x – independent variable (input)



Simple Linear Regression

 For now, assume just one (input) independent 
variable x, and one (output) dependent variable y
◦ Multiple linear regression assumes an input vector x

◦ Multivariate linear regression assumes an output vector y

 We will "fit" the points with a line (i.e. hyper-plane)

 Which line should we use?
◦ Choose an objective function

◦ For simple linear regression we choose sum squared error 
(SSE)
 S (predictedi – actuali)

2  = S (residuei)
2

◦ Thus, find the line which minimizes the sum of the squared 
residues (e.g. least squares)

39



How do we "learn" parameters

 For the 2-d problem (line) there are 
coefficients for the bias and the 
independent variable (y-intercept and 
slope)

 To find the values for the coefficients 
which minimize the objective function we 
take the partial derivates of the objective 
function (SSE) with respect to the 
coefficients.  Set these to 0, and solve. 

40
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Multiple Linear Regression

 There is a closed form for finding multiple linear regression 
weights which requires matrix inversion, etc.

 There are also iterative techniques to find weights

 One is the delta rule.  For regression we use an output node 
which is not thresholded (just does a linear sum) and iteratively 
apply the delta rule, which is more natural for the delta rule 
equation

 Delta rule will update towards the objective of minimizing the 
SSE, thus solving multiple linear regression

 There are many other regression approaches that give different 
results by trying to better handle outliers and other statistical 
anomalies

41

  

  

Y = b0 + b1X1 + b2X2 +… + bn Xn



Intelligibility

 One nice advantage of linear regression models (and 
linear classification) is the potential to look at the 
coefficients to give insight into which input variables are 
most important in predicting the output

 The variables with the largest magnitude have the 
highest correlation with the output
◦ A large positive coefficient implies that the output will 

increase when this input is increased (positively correlated)

◦ A large negative coefficient implies that the output will 
decrease when this input is increased (negatively correlated)

◦ A small or 0 coefficient suggests that the input is 
uncorrelated with the output (at least at the 1st order)

 Linear regression can be used to find best "indicators"

 However, be careful not to confuse correlation with 
causality

42



SSE and Linear Regression

 SSE chooses to square the difference of 
the predicted vs actual. Why square?

 Don't want residues to cancel each 
other

 Could use absolute or other distances 
to solve problem

◦ S |predictedi – actuali| :

 SSE leads to a parabolic error surface 
which is good for gradient descent

 Which line would least squares choose?

◦ There is always one “best” fit

43
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SSE and Linear Regression
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SSE and Linear Regression

 SSE chooses to square the difference of the 
predicted vs actual. Why square?

 Don't want residues to cancel each other

 Could use absolute or other distances to 
solve problem

◦ S |predictedi – actuali| :

 SSE leads to a parabolic error surface which 
is good for gradient descent

 Which line would least squares choose?

◦ There is always one “best” fit

 Note that the squared error causes the 
model to be more highly influenced by 
outliers

◦ Though best fit assuming Gaussian noise 
error from true surface
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SSE and Linear Regression 

Generalization

47
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Anscombe's Quartet

What lines "really" best fit each case? – different approaches

48



Non-Linear Tasks
 Linear Regression will not generalize well to the task below

 Needs a non-linear surface

 Could do a feature pre-process as with the quadric machine

◦ For example, we could use an arbitrary polynomial in x

◦ Thus it is still linear in the coefficients, and can be solved with delta 
rule, etc.

◦ What order polynomial should we use? – Overfit issues occur as we'll 
discuss later

49
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Delta Rule for Classification

 First consider the one dimensional case

 The decision surface for the perceptron would be any (first) point that divides 
instances

 Delta rule will try to fit a line through the target values which minimizes SSE 
and the decision point will be where the line crosses .5 for 0/1 targets. 
Looking down on data for perceptron view.  Now flip it on its side for delta 
rule view.

 Will converge to the one optimal line (and dividing point) for this objective

50
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Delta Rule for Classification

 What would happen in this adjusted case for perceptron and delta rule and 

where would the decision point (i.e. .5 crossing) be?
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Delta Rule for Classification
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 Leads to misclassifications even though the data is linearly separable

 For Delta rule the objective function is to minimize the regression line SSE, 

not maximize classification



Delta Rule for Classification

 What would happen if we were doing a regression fit with a sigmoid/logistic 
curve rather than a line?
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Delta Rule for Classification

 Sigmoid fits many decision cases quite well!  This is basically what logistic 
regression does.
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1

0

Observation: Consider the 2 input perceptron case.  Note that the output z is a 

function of 2 input variables for the 2 input case (x1, x2), and thus we really have a 3-d

decision surface (i.e. a plane accounting for the two input variables and the 3rd

dimension for the output), yet the decision boundary is still a line in the 2-d input 

space when we represent the outputs with different colors, symbols, etc.  The Delta 

rule would fit a regression plane to these points with the decision line being that line 

where the plane went through .5.  What would logistic regression do?
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Logistic Regression

 One commonly used algorithm is Logistic 
Regression

 Assumes that the dependent (output) variable is 
binary which is often the case in medical and other 
studies. (Does person have disease or not, survive 
or not, accepted or not, etc.)

 Like Quadric, Logistic Regression does a non-linear 
transform on the data after which it just does linear 
regression on the transformed data

 Logistic regression fits the data with a 
sigmoidal/logistic curve rather than a line and 
outputs an approximation of the probability of the 
output given the input
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Logistic Regression Example
 Age (X axis, input variable) – Data is fictional

 Heart Failure (Y axis, 1 or 0, output variable)

 Could use value of regression line as a probability approximation

◦ Extrapolates outside 0-1 and not as good empirically

 Sigmoidal curve to the right gives empirically good probability 
approximation and is bounded between 0 and 1
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Logistic Regression Approach

Learning

1. Transform initial input probabilities into log odds 
(logit)

2. Do a standard linear regression on the logit
values
◦ This effectively fits a logistic curve to the data, while 

still just doing a linear regression with the 
transformed input (ala quadric machine, etc.)

Generalization

1. Find the value for the new input on the logit line

2. Transform that logit value back into a probability
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Non-Linear Pre-Process to Logit

(Log Odds)

60
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Non-Linear Pre-Process to Logit

(Log Odds)
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Logistic Regression Approach

 Could use linear regression with the probability points, but that 
would not extrapolate well

 Logistic version is better but how do we get it?

 Similar to Quadric we do a non-linear pre-process of the input 
and then do linear regression on the transformed values – do a 
linear regression on the log odds - Logit

62

0   10   20   30   40   50   60

prob.

Cure

d
0

1

0   10   20   30   40   50   60

prob.

Cure

d
0

1



Non-Linear Pre-Process to Logit

(Log Odds)
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Regression of Log Odds
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40 4 6 .67 2.0 0.69
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• y = .11x – 3.8   - Logit regression equation

• Now we have a regression line for log odds (logit)

• To generalize, we interpolate the log odds value for the new data point

• Then we transform that log odds point to a probability: p = elogit(x)/(1+elogit(x))

• For example assume we want p for dosage = 10

Logit(10) = .11(10) – 3.8 = -2.7

p(10) = e-2.7/(1+e-2.7) = .06    [note that we just work backwards from logit to p]

• These p values make up the sigmoidal regression curve (which we never have to 

actually plot)
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Summary

 Linear Regression and Logistic Regression are nice 
tools for many simple situations
◦ But both force us to fit the data with one shape (line or 

sigmoid) which will often underfit 

 Intelligible results

 When problem includes more arbitrary non-linearity 
then we need more powerful models which we will 
introduce
◦ Though non-linear data transformation can help in these 

cases while still using a linear model for learning.

 These models are commonly used in data mining 
applications and also as a "first attempt" at 
understanding data trends, indicators, etc.
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Feature Selection, Preparation, and 

Reduction
 Learning accuracy depends on the data!
◦ Is the data representative of future novel cases - critical

◦ Relevance

◦ Amount

◦ Quality
 Noise

 Missing Data

 Skew

◦ Proper Representation

◦ How much of the data is labeled (output target) vs. 
unlabeled

◦ Is the number of features/dimensions reasonable?
 Reduction



Gathering Data

 Consider the task – What kinds of features could 
help

 Data availability
◦ Significant diversity in cost of gathering different features

◦ More the better (in terms of number of instances, not 
necessarily in terms of number of dimensions/features)
 The more features you have the more data you need

◦ Jitter – Increased data can help with overfit – handle with 
care!

 Labeled data is best

 If not labeled
◦ Could set up studies/experts to obtain labeled data 

◦ Use unsupervised and semi-supervised techniques
Clustering

 Active Learning, Bootstrapping, Oracle Learning, etc.
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Feature Selection - Examples

 Invariant Data
◦ For character recognition: Size, Rotation, Translation 

Invariance
 Especially important for visual tasks

◦ Chess board features
 Is vector of board state invariant?

 Character Recognition Class Assignment Example
◦ Assume we want to draw a character with an 

electronic pen and have the system output which 
character it is

◦ Assume an MLP approach with backpropagation 
learning

◦ What features should we use and how would we 
train/test the system?
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Data Representation

 Data Types
◦ Continuous

◦ Categorical/Symbolic
Nominal – No natural ordering

Ordered/Ordinal

 Special cases: Time/Date, Addresses, Names, IDs, etc.

 Already discussed how to transform categorical to continuous data 
for models (e.g. perceptrons) which want continuous inputs

 Normalization for continuous values (0-1 common)
◦ What if data has skew, outliers, etc.

◦ Standardization (z-score) – Transform the data by subtracting 
the average and then dividing by the standard deviation –
allows more information on spread/outliers

◦ Look at the data to make these and other decisions!
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Transforming Continuous to 

Ordered Data
 Some models are better equipped to handle 

nominal/ordered data

 Basic approach is to discretize/bin the continuous data
◦ How many bins – what are tradeoffs? – seek balance

◦ Equal-Width Binning
 Bins of fixed ranges

Does not handle skew/outliers well

◦ Equal-Height Binning
 Bins with equal number of instances

Uniform distribution, can help for skew and outliers

More likely to have breaks in high data concentrations

◦ Clustering
More accurate, though more complex

◦ Bin borders are always an issue
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Supervised Binning
 The previous binning approaches do not consider the 

classification of each instance and thus they are 
unsupervised (Class-aware vs. Class-blind)

 Could use a supervised approach which attempts to bin 
such that learning algorithms may more easily classify

 Supervised approaches can find bins while also 
maximizing correlation between output classes and values 
in each bin
◦ Often rely on information theoretic techniques
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Relevant Data

 Typically do not use features where
◦ Almost all instance have the same value (no information)

 If there is a significant, though small, percentage of other values, 
then might still be useful

◦ Almost all instances have unique values (SSN, phone-
numbers)
 Might be able to use a variation of the feature (such as area code)

◦ The feature is highly correlated with another feature 
 In this case the feature may be redundant and only one is needed

◦ Careful if feature is too highly correlated with the target
 Check this case as the feature may just be a synonym with the 

target and will thus lead to overfitting (e.g. the output target was 
bundled with another product so they always occur together)
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Missing Data
 Need to consider approach for learning and execution (could differ)

 Throw out data with missing attributes 

◦ Could lose a significant amount of training set 

◦ Missing attribute may contain important information, (didn’t vote can mean 
something about congressperson, extreme measurements aren’t captured, etc.).

◦ Doesn’t work during execution

 Set (impute/imputation) attribute to its mode/mean (based on rest of data set)
◦ too big an assumption?

 Set attribute to its mode/mean given the output class (only works for training)

 Use a learning scheme (NN, DT, etc) to impute missing values

◦ Train imputing models with a training set which has the missing attribute as the 
target and the rest of the attributes (including the original target) as input features. 
Better accuracy, though more time consuming - multiple missing values?

 Impute based on the most similar complete instance(s) in the data set

 Train multiple reduced input models to handle common cases of missing data

 Let unknown be just another attribute value – Can work well in many cases

◦ Natural for nominal data

◦ With continuous data, can use an indicator node, or a value which does not occur 
in the normal data (-1, outside range, etc.), however, in the latter case, the model 
will treat this as an extreme ordered feature value and may cause difficulties



Dirty Data and Data Cleaning

 Dealing with bad data, inconsistencies, and outliers

 Many ways errors are introduced

◦ Measurement Noise/Outliers

◦ Poor Data Entry

◦ User lack of interest
 Most common birthday when B-day mandatory: November 11, 1911

 Data collectors don't want blanks in data warehousing so they may fill in 
(impute) arbitrary values

 Data Cleaning

◦ Data analysis to discover inconsistencies

◦ Noise/Outlier removal – Requires care to know when it is noise 
and how to deal with this during execution – Our experiments 
show outlier removal during training increases subsequent 
accuracy.

◦ Clustering/Binning can sometimes help
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Labeled and Unlabeled Data

 Accurately labeled data is always best

 Often there is lots of cheaply available unlabeled data which is 
expensive/difficult to label – internet data, etc.

 Semi-Supervised Learning – Can sometimes augment a small set 
of labeled data with lots of unlabeled data to gain improvements

 Active Learning – Out of a large collection of unlabeled data, 
interactively select the next most informative instance to label

 Bootstrapping: Iteratively use current labeled data to train model, 
use the trained model to label the unlabeled data, then train 
again including most confident newly labeled data, and re-label, 
etc., until some convergence

 Combinations of above and other techniques being proposed
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Feature Selection and Feature 

Reduction
 Given n original features, it is often advantageous to reduce this 

to a smaller set of features for actual training

◦ Can improve/maintain accuracy if we can preserve the most 
relevant information while discarding the most irrelevant 
information

◦ and/or Can make the learning process more computationally and 
algorithmically manageable by working with less features

◦ Curse of dimensionality requires an exponential increase in data 
set size in relation to the number of features to learn without 
overfit – thus decreasing features can be critical

 Feature Selection seeks a subset of the n original features which 
retains most of the relevant information

◦ Filters, Wrappers

 Feature Reduction combines the n original features into a new 
smaller set of features which hopefully retains most of the 
relevant information from all features - Data fusion (e.g. LDA, 
PCA, etc.)
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Feature Selection - Filters
 Given n original features, how do you select size of subset

◦ User can preselect a size m (< n)

◦ Can find the smallest size where adding more features does not 
yield improvement

 Filters work independent of any particular learning algorithm

 Filters seek a subset of features which maximize some type of 
between class separability – or other merit score

 Can score each feature independently and keep best subset

◦ e.g. 1st order correlation with output, fast, less optimal

 Can score subsets of features together

◦ Exponential number of subsets requires a more efficient, sub-
optimal search approach

◦ How to score features independent of the ML model to be trained 
on is an important research area

◦ Decision Tree or other ML model pre-process
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Feature Selection - Wrappers

 Optimizes for a specific learning algorithm

 The feature subset selection algorithm is a "wrapper" 
around the learning algorithm
1. Pick a feature subset and pass it in to learning algorithm

2. Create training/test set based on the feature subset

3. Train the learning algorithm with the training set

4. Find accuracy (objective) with test set

5. Repeat for all feature subsets and pick the feature 
subset which led to the highest predictive accuracy (or 
other objective)

 Basic approach is simple

 Variations are based on how to select the feature 
subsets, since there are an exponential number of 
subsets
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Feature Selection - Wrappers

 Exhaustive Search - Exhausting

 Forward Search – O(n2 · learning/testing time) - Greedy
1. Score each feature by itself and add the best feature to the 

initially empty set FS (FS will be our final Feature Set)

2. Try each subset consisting of the current FS plus one remaining 
feature and add the best feature to FS

3. Continue until either hit goal of m, or stop getting significant 
improvement

 Backward Search – O(n2 · learning/testing time) - Greedy
1. Score the initial complete set FS (FS will be our final Feature Set)

2. Try each subset consisting of the current FS minus one feature in 
FS and drop the feature from FS causing least decrease in 
accuracy

3. Continue until either hit goal of m, or begin to get significant 
decreases in accuracy

 Branch and Bound and other heuristic approaches available
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PCA – Principal Components 

Analysis
 PCA is one of the most common feature reduction 

techniques

 A linear method for dimensionality reduction

 Allows us to combine much of the information 
contained in n features into m features where m < n

 PCA is unsupervised in that it does not consider the 
output class/value of an instance – Are other 
algorithms which do (e.g. Linear Discriminant 
Analysis)

 PCA works well in many cases where data has mostly 
linear correlations

 Non-linear dimensionality reduction is also a 
relatively new and successful area and can give much 
better results for data with significant non-linearities
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PCA Overview
 Seek new set of bases which correspond to the highest 

variance in the data

 Transform n-dimensional data to a new n-dimensional 
basis
◦ The new dimension with the most variance is the first 

principal component

◦ The next is the second principal component, etc.

◦ Note z1fuses significant information from both x1 and x2

 Drop those dimensions for which there is little variance
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Variance and Covariance

 Variance is a measure of data spread in one 
dimension (feature)

 Covariance measures how two dimensions 
(features) vary with respect to each other
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Covariance and the Covariance 

Matrix
 Considering the sign (rather than exact value) of covariance:

◦ Positive value means that as one feature increases or decreases 
the other does also (positively correlated)

◦ Negative value means that as one feature increases the other 
decreases and vice versa (negatively correlated)

◦ A value close to zero means the features are independent

◦ If highly covariant, are both features necessary?

 Covariance matrix is an n × n matrix containing the 
covariance values for all pairs of features in a data set with n
features (dimensions)

 The diagonal contains the covariance of a feature with itself 
which is the variance (which is the square of the standard 
deviation)

 The matrix is symmetric
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PCA Example
 First step is to center the original data around 

0 by subtracting the mean in each dimension
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PCA Example
 Second: Calculate the covariance matrix of the 

centered data

 Only 2 × 2 for this case
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PCA Example
 Third: Calculate the unit eigenvectors and eigenvalues of the 

covariance matrix (remember linear algebra)

◦ Covariance matrix is always square n × n and positive semi-definite, 
thus n non-negative eigenvalues will exist

◦ All eigenvectors (principal components/dimensions) are orthogonal to 
each other and will make the new set of bases/dimensions for the data

◦ The magnitude of each eigenvalue corresponds to the variance along 
that new dimension – Just what we wanted!

◦ We can sort the principal components according to their eigenvalues

◦ Just keep those dimensions with the largest eigenvalues
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PCA Example
 Below are the two eigenvectors overlaying the centered data

 Which eigenvector has the largest eigenvalue?

 Fourth Step:  Just keep the p eigenvectors with the largest eigenvalues

◦ Do lose some information, but if we just drop dimensions with small 
eigenvalues then we lose only a little information

◦ We can then have p input features rather than n

◦ The p features contain the most pertinent combined information from all n
original features

◦ How many dimensions p should we keep?
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PCA Example
 Last Step:  Transform the features to the p chosen bases (Eigenvectors)

 Transformed data (m instances) is a matrix multiply T =  A × B

◦ A is a p×n matrix with the p principal components in the rows, component one on top

◦ B is a n×m matrix containing the transposed centered original data set

◦ TT is a m×p matrix containing the transformed data set  

 Now we have the new transformed data set with dimensionality p

 Keep matrix A to transform future 0-centered data instances

 Below shows transform of both dimensions, would if we just kept the 1st component
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PCA Algorithm Summary
1. Center the m TS features around 0 (subtract m means)

2. Calculate the covariance matrix of the centered TS

3. Calculate the unit eigenvectors and eigenvalues of the 
covariance matrix

4. Keep the p (< m) eigenvectors with the largest 
eigenvalues

5. Matrix multiply the p eigenvectors with the centered TS 
to get a new TS with only p features

 Given a novel instance during execution
1. Center instance around 0

2. Do the matrix multiply (step 5 above) to change the new 
instance from m to p features
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